François Chollet @fchollet Deep learning @google. Creator of Keras, neural networks library. Author of 'Deep Learning with Python'. Opinions are my own. Jun. 04, 2018 1 min read

Self-driving cars a great example, because in this case there are two competing approaches -- the symbolic one, mostly consisting of handcrafted software encoding human abstractions, and the deep learning one, learned end-to-end. One will get to L4--even L5, the other never will.

It's not that deep learning is intrinsically incapable of driving -- it's that the situation space is extremely high-dimensional (due to edge cases), and that a deep learning system requires to be trained on a *dense sampling* of the same space that the system will operate in.

Because such a representative, dense sampling is impossible to obtain, even when heavily leveraging simulated environments, the symbolic approach will prevail (specifically, an approach that is mostly symbolic but blends human abstractions with learned perceptual primitives)

You can follow @fchollet.


Tip: mention @threader_app on a Twitter thread with the keyword “compile” to get a link to it.

Enjoy Threader? Sign up.

Threader is an independent project created by only two developers. The site gets 500,000+ visits a month and our iOS Twitter client was featured as an App of the Day by Apple. Running this space is expensive and time consuming. If you find Threader useful, please consider supporting us to make it a sustainable project.