François Chollet+ Your Authors @fchollet Deep learning @google. Creator of Keras, neural networks library. Author of 'Deep Learning with Python'. Opinions are my own. Jun. 04, 2018 1 min read + Your Authors

Self-driving cars a great example, because in this case there are two competing approaches -- the symbolic one, mostly consisting of handcrafted software encoding human abstractions, and the deep learning one, learned end-to-end. One will get to L4--even L5, the other never will.

It's not that deep learning is intrinsically incapable of driving -- it's that the situation space is extremely high-dimensional (due to edge cases), and that a deep learning system requires to be trained on a *dense sampling* of the same space that the system will operate in.

Because such a representative, dense sampling is impossible to obtain, even when heavily leveraging simulated environments, the symbolic approach will prevail (specifically, an approach that is mostly symbolic but blends human abstractions with learned perceptual primitives)

You can follow @fchollet.


Tip: mention @threader_app on a Twitter thread with the keyword “compile” to get a link to it.

Enjoy Threader? Sign up.

Since you’re here...

... we’re asking visitors like you to make a contribution to support this independent project. In these uncertain times, access to information is vital. Threader gets 1,000,000+ visits a month and our iOS Twitter client was featured as an App of the Day by Apple. Your financial support will help two developers to keep working on this app. Everyone’s contribution, big or small, is so valuable. Support Threader by becoming premium or by donating on PayPal. Thank you.

Follow Threader